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Abstract� We describe the object�oriented software package OOQP for solving convex quad�
ratic programming problems �QP�� The primal�dual interior point algorithms supplied by
OOQP are implemented in a way that is largely independent of the problem structure� Users
may exploit problem structure by supplying linear algebra� problem data� and variable classes
that are customized to their particular applications� The OOQP distribution contains default
implementations that solve several important QP problem types� including general sparse and
dense QPs� bound�constrained QPs� and QPs arising from support vector machines and Huber
regression� The implementations supplied with the OOQP distribution are based on such well
known linear algebra packages as MA�	
�	� LAPACK� and PETSc�
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�� Introduction

Convex quadratic programming problems �QPs� are optimization problems in
which the objective function is a convex quadratic and the constraints are linear�
They have the general form

min
x

�
�x

TQx� cTx s�t� Ax � b� Cx � d� ���

where Q is a symmetric positive semide	nite n � n matrix� x � IR
n is a vector

of unknowns� A and C are �possibly null� matrices� and b and d are vectors
of appropriate dimensions� The constraints Ax � b are referred to as equality
constraints while Cx � d are known as inequality constraints�

QPs arise directly in such applications as least�squares regression with bounds
or linear constraints� robust data 	tting� Markowitz portfolio optimization� data
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mining� support vector machines� and tribology� They also arise as subproblems
in optimization algorithms for nonlinear programming �in sequential quadratic
programming algorithms and augmented Lagrangian algorithms� and in stochas�
tic optimization �regularized decomposition algorithms�� The data objects that
de	ne these applications exhibit a vast range of properties and structures� and it
is desirable
often essential
to exploit the structure when solving the problem
computationally� The wide variety of structures makes it di�cult to provide a
single piece of software that functions e�ciently on any given application� In
this paper� we describe the next�best thing� an object�oriented software package
called OOQP that includes the following features�

� Interior�point algorithms that are implemented in a structure�independent
way� permitting reuse of the optimization�related sections of OOQP across
the whole application space�

� Isolation of structure�dependent operations and storage schemes into classes
that can be customized by the user to 	t particular applications�

� A linear algebra layer that can be used to assemble solvers for speci	c problem
structures�

� Implementations of solvers for general large� sparse QPs and several other
generic problem types�

� Implementations of solvers for several special problem types� including Huber
regression and support vector machines� to demonstrate customization of the
package to speci	c applications�

� A variety of interfaces to the bundled implementations that allow problem
de	nition and data entry via ASCII 	les� MPS format� the AMPL modeling
language� and MATLAB�

In this introduction� we 	rst outline the basic design rationale of OOQP�
then discuss related e
orts in object�oriented numerical codes� particularly codes
related to optimization�

���� OOQP Design Rationale

The algorithms implemented in OOQP are of the primal�dual interior�point type�
These methods are well suited for structured problems� mainly because the linear
systems that must be solved to compute the step at each iteration retain the same
dimension and structure throughout the computation� When this linear system
is sparse� it may not be necessary to perform storage allocation and ordering for
a direct factorization anew at each iteration� but possibly just once at the initial
solve� The coding e
ort involved in setting up and solving the linear system
e�ciently is typically much less than for the rival active�set approach� in which
the matrix to be factored grows and shrinks as the computation progresses�

Interior�point algorithms are well suited to object�oriented implementation
because the best heuristics� devices� and parameter settings used in these algo�
rithms are largely independent of the underlying problem structure� Mehrotra�s
heuristics �see ����� for choosing the centering parameter� step length� and correc�
tor terms give signi	cant improvements over standard path�following algorithms
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regardless of whether we are solving a linear program or a sparse structured QP�
Gondzio�s multiple correctors ���� also yield improvements across a wide range
of problem types� Object�oriented design allows the classes that implement the
interior�point algorithms to be written in a way that is independent of the prob�
lem structure� Users who wish to implement a customized version of OOQP for
their problem type need not concern themselves with the interior�point sections
of the code at all� but rather can focus on constructing classes to store data and
variables and to perform the various linear algebra operations required by the
interior�point algorithm� The code that implements the core of the algorithm�
including all its sophisticated heuristics� can be reused across the entire space of
problem structures and applications�

Codes that simply target general QP formulations �of the form ���� for in�
stance� may not be able to solve all QPs e�ciently� even if they exploit sparsity
in the objective Hessian and constraint matrices� A dramatic example of a situ�
ation in which a generic solver would perform poorly is described by Ferris and
Munson ����� who solve a QP arising from support�vector machine computations
in which the Hessian has the form

Q � D � V V T � ���

where D is a diagonal matrix with positive diagonal elements and V is a dense
n � m matrix� where n � m� This Q is completely dense� and a generic dense
implementation would solve an n � n dense matrix at each interior�point itera�
tion to 	nd the step� Such an approach is doomed to failure when n is large �of
the order of ���� for example�� OOQP includes an implementation speci	cally
tailored to his problem structure� in which we store V rather than Q and use
specialized factorization routines based on judicious block elimination to per�
form the linear algebra e�ciently� A similar approach is described by Ferris and
Munson �����

As well as being useful for people who want to develop e�cient solvers for
structured problems� the OOQP distribution contains shrink�wrapped solvers for
general QPs and for certain structured problems� We provide an implementation
for solving sparse general QPs that can be invoked by procedure calls from C
or C�� code� as an executable with an input 	le that de	nes the problem
in MPS format extended appropriately for quadratic programming �Maros and
M�esz�aros ������ or via invocations from the higher�level languages AMPL and
MATLAB� The distribution also includes an implementation of a solver for QPs
arising from support vector machines and from Huber regression� Both these
implementations accept input either from an ascii 	le or through a MATLAB
interface�

The code is also useful for optimization specialists who wish to perform algo�

rithm development� experimenting with variants of the heuristics in the interior�
point algorithm� di
erent choices of search direction and step length� and so on�
Such researchers can work with the C�� class that implements the algorithm�
without concerning themselves with the details associated with speci	c problem
types and applications�
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In addition� encapsulation of the linear algebra operations allows users of the
code to incorporate alternative linear algebra packages as they become available�
In OOQP�s implementation of the solver for sparse general QPs� the MA�� code
from the HSL Library ������� for sparse symmetric inde	nite systems is used as
the engine for solving the linear systems that arise at each interior�point itera�
tion� We have implemented solvers based on other codes� including Oblio �����
HSL�s MA��� and SuperLU ���� These solvers di
er from the distributed version
only in the methods and classes speci	c to the linear algebra� The classes that
de	ne the interior�point algorithm� calculate the residuals� de	ne the data� store
and operate on the variables� and read the problem data from an input 	le are
una
ected by the use of di
erent linear solvers�

We chose to write OOQP in the C�� programming language� The object�
oriented features of this language make it possible to express the design of the
code in a natural way� Moreover� C�� is a well�known language for which stable�
e�cient compilers are available on a wide range of hardware platforms�

���� Related Work

Several other groups have been working on object�oriented numerical software in
a variety of contexts in optimization� linear algebra� and di
erential equations�
We mention some of these e
orts here�

The Hilbert Class Library �HCL� �Gockenbach and Symes ����� is a collection
of C�� classes representing vectors� linear and nonlinear operators� and func�
tions� together with a collection of methods for optimization and linear algebra
that are implemented in terms of these abstract classes� Particular character�
istics of HCL include an ability to handle large data sets and linear operators
that are not de	ned explicitly in terms of matrices� The philosophy of OOQP is
similar to that of HCL� though our more speci	c focus on structured quadratic
programs distinguishes our e
ort� The rSQP�� package �Bartlett ���� is a C��
package that currently implements reduced�space SQP methods for nonlinear
programming� Basic components of the algorithm are abstracted� such as com�
putation of the null space and the quasi�Newton update� In structuring the
package� particular attention is paid to the linear algebra layer and interfaces to
it� The COOOL package �Deng� Gouveia� and Scales ���� is another collection of
C�� classes and includes implementations of a wide variety of algorithms and
algorithm components�

The PETSc project �Balay et al� ���� focuses on the development of software
components for large�scale linear algebra� allowing data�structure�independent
implementation of solvers for partial di
erential equations and nonlinear equa�
tions� on serial and parallel architectures� Although PETSc is implemented
chie�y in C� its follows object�oriented design principles� PETSc solvers and
design conventions are used in the TAO package �Benson� Curfman McInnes�
and Mor�e ����� which currently implements solvers for large�scale unconstrained
and bound�constrained optimization problems on parallel platforms� An object�
oriented direct solver for sparse linear algebra problems is discussed by Dobrian�
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Kumfert� and Pothen ���� we have used their Oblio package ���� in implementa�
tions of OOQP for solving general sparse QPs�

Other nonoptimization object�oriented e
orts that of Chow and Heroux ����
who focus on preconditioning of iterative solvers for linear systems and describe
a C�� package for that allows implementation of block preconditioners in a way
that is independent of the storage scheme for the submatrix blocks� The Di
pack
code of Bruaset and Langtangen ��� is a C�� object�oriented implementation
of iterative solvers for sparse linear systems�

���� Outline of This Paper

Section � of this paper describes the primal�dual interior�point algorithms that
are the basis of OOQP� The layered structure of the code and its major classes
are outlined in Section �� where we also illustrate each class by discussing its
implementation for the particular formulation ���� Section ��� outlines the lin�
ear algebra layer of OOQP� showing how abstractions of the important linear
algebra objects and operations can be used in the higher layers of the pack�
age� while existing software packages can be used to implement these objects
and operations� Other signi	cant classes in OOQP are discussed in Section ��
Section � further illustrates the usefulness of the object�oriented approach by
describing three QPs with highly specialized structure and outlining how each
is implemented e�ciently in the OOQP framework� In Section �� we outline the
contents of the OOQP distribution 	le�

Further information on OOQP can be found in the OOQP User Guide �����
which is included in the distribution and can also be obtained from the OOQP
Web site� www�cs�wisc�edu��swright�ooqp�

	� Primal�Dual Interior�Point Algorithms

In this section we describe brie�y the interior�point algorithms implemented in
OOQP� For concreteness� we focus our discussion on the formulation ����

���� Optimality Conditions

The optimality conditions for ��� are that there exist Lagrange multiplier vectors
y and z and a slack vector s such that the following relations hold�

Qx� ATy � CTz � �c� ��a�

Ax � b� ��b�

Cx� s � d� ��c�

z � � � s � �� ��d�

The last row indicates that we require z and s to be complementary nonnegative
variables� that is� we require zT s � � in addition to z � �� s � �� We assume that
A and C have mA and mC rows� respectively� so that y � IR

mA and z � IR
mC �
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Primal�dual interior�point algorithms generate iterates �x� y� z� s� that are
strictly feasible with respect to the inequality constraints� that is� �z� s� � ��
The complementarity measure � de	ned by

� � zT s�mC ���

is important in measuring the progress of the algorithm� since it measures viola�
tion of the complementarity condition zT s � �� In general� each iterate will also
be infeasible with respect to the equality constraints ��a�� ��b�� and ��c�� so our
optimality measure also takes into account violation of these constraints�

���� Mehrotra Predictor�Corrector Algorithm

We implement two algorithms� Mehrotra�s predictor�corrector method ���� and
Gondzio�s higher�order corrector method ����� �See also ���� Chapter ��� for a
detailed discussion of both methods�� These algorithms have proved to be the
most e
ective methods for linear programming problems and in our experience
are just as e
ective for QP� Mehrotra�s algorithm is outlined below�

Algorithm MPC 
Mehrotra Predictor�Corrector�
Given starting point �x� y� z� s� with �z� s� � �� parameter � � ��� ���
repeat

Set � � zT s�mC �
Solve for ��xa���ya� ��za���sa���

�
���
Q �AT �CT �
A � � �
C � � �I
� � S Z

�
���

�
���
�xa�

�ya�

�za�

�sa�

�
��� � �

�
���

rQ
rA
rC
ZSe

�
��� � ���

where

S � diag�s�� s�� � � � � smC �� ��a�

Z � diag�z�� z�� � � � � zmC �� ��b�

rQ � Qx� c �ATy �CT z� ��c�

rA � Ax� b� ��d�

rC � Cx� s � d� ��e�

Compute �a� to be the largest value in ��� �� such that

�z� s� � ���za���sa�� � ��

Set �a� � �z � �a��z
a��T �s� �a��s

a���mC �
Set 	 � ��a����� �
Solve for ��x��y��z��s��
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�
���
Q �AT �CT �
A � � �
C � � �I
� � S Z

�
���

�
���
�x
�y
�z
�s

�
��� � �

�
���

rQ
rA
rC

ZSe � 	�e ��Za��Sa�e

�
��� � ���

where �Za� and �Sa� are de	ned in an obvious way�
Compute �max to be the largest value in ��� �� such that

�s� z� � ���s��z� � ��

Choose � � ��� �max� according to Mehrotra�s heuristic�
Set

�x� y� z� s�� �x� y� z� s� � ���x��y��z��s��

until convergence or infeasibility test satis	ed�

The direction obtained from ��� can be viewed as an approximate second�
order step toward a point �x�� y�� z�� s�� at which the conditions ��a�� ��b��
and ��c� are satis	ed and� in addition� the pairwise products z�i s

�
i are all equal

to 	�� The heuristic for 	 yields a value in the range ��� ��� so the step usually
produces a reduction in the average value of the pairwise products from their
current average of ��

Gondzio�s approach ���� follows the Mehrotra algorithm in its computation
of directions from ��� and ���� It may then go on to enhance the search direction
further by solving additional systems similar to ���� with variations in the last
mC components of the right�hand side� Successive corrections are performed so
long as �i� the length of the step �max that can be taken along the corrected
direction is lengthened appreciably� and �ii� the pairwise products sizi whose
values are either much larger than or much smaller than the average are brought
into closer correspondence with the average� The maximum number of correc�
tions is dictated by the ratio of the time taken to factor the coe�cient matrix
in ��� to the time taken to solve the system using these factors for a given right�
hand side� When the cost of the solve is small relative to the cost of factorization�
we allow more correctors to be calculated� up to a limit of ��

The algorithm uses the steplength heuristic described in Mehrotra ���� Sec�
tion ��� modi	ed slightly to ensure that the same step lengths are used for both
primal and dual variables�

���� Convergence Conditions

We use convergence criteria similar to those of PCx ���� To specify these� we

use �xk� yk� zk� sk� to denote the primal�dual variables at iteration k� and �k
def
�

�zk�T sk�mC to denote the corresponding value of �� Let rkQ� r
k
A� and rkC be the
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values of the residuals at iteration k� and let gapk be the duality gap at iteration
k� which is de	ned by

gapk
def
� �xk�TQxk � bTyk � cTxk � dT zk� ���

�It can be shown that gapk � mC�k when �xk� yk� zk� sk� is feasible with respect
to the conditions ��a�� ��b�� ��c�� and ��d��� We de	ne the quantity 
k as


k
def
�
k�rkQ� r

k
A� r

k
C�k� � gapk

k�Q�A�C� c� b� d�k�
�

where the denominator is simply the element of largest magnitude in all the
data quantities that de	ne the problem ���� Note that 
k � � if and only if
�xk� yk� zk� sk� is optimal�

Given parameters tol� and tolr �both of which have default value ������
we declare successful termination when

�k 	 tol�� k�rkQ� r
k
A� r

k
C�k� 	 tolrk�Q�A�C� c� b� d�k�� ���

We declare the problem to be probably infeasible if


k � ���� and 
k � ��� min
��i�k


i� ����

We terminate with status �unknown� if the algorithm appears to be making
slow progress� that is�

k � �� and min
��i�k


i �
�

�
min

��i�k�	�

i� ����

or if the ratio of infeasibility to the value of � appears to be blowing up� that is�

k�rkQ� r
k
A� r

k
C�k� � tolrk�Q�A�C� c� b� d�k� ���a�

and k�rkQ� r
k
A� r

k
C�k���k � ���k�r�Q� r

�
A� r

�
C�k����� ���b�

We also terminate when the number of iterations exceeds a speci	ed maximum�

���� Major Arithmetic Operations

We can now identify the key arithmetic operations to be performed at each itera�
tion of the interior�point algorithm� Computation of the residuals rQ� rA� and rC
from the formulae ��c�� ��d�� and ��e� is performed once per iteration� Solution
of the systems such as ��� and ���� which have the same coe�cient matrix but
di
erent right�hand sides� is performed between two and six times per iteration�
Inner products are needed in the computation of � and �a�� Componentwise vec�
tor operations are needed to determine �max� and �saxpy� operations are needed
to take the step� The implementation of all these operations depends heavily on
the storage scheme used for the the problem data and variables� on the speci	c
structure of the problem data� and on the choice of algorithm for solving the
linear systems� The interior�point algorithm does not need to know about these
details� however� so it can be implemented in a way that is independent of these
considerations� This observation is the basis of our design of OOQP�
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�� Layered Design of OOQP and Major Classes

OOQP derives much of its �exibility from a layered design in which each layer
is built from abstract operations de	ned by the layer below it� Those who wish
to create a specialized solver for a certain type of QP may customize one of the
three layers� In this section� we outline the layer structure and describe brie�y
the major classes within these layers�

The top layer is the QP solver layer� which consists of the interior�point
algorithms and heuristics for solving QPs� The OOQP distribution contains two
implementations of the Solver class in this layer� one for Mehrotra�s predictor�
corrector algorithm and one for Gondzio�s variant�

Immediately below the solver layer is the problem formulation layer� which
de	nes classes with behavior of immediate interest to interior�point QP solvers�
Included are classes with methods to store and manipulate the problem data
�Q�A�C� c� b� d�� the current iterate �x� y� z� s�� and the residuals �rQ� rA� rC�� as
well as classes with methods for solving linear systems such as ��� and ���� The
major classes in this layer
Data� Variables� Residuals� and LinearSystem

are discussed below� We indicate brie�y how these classes would be implemented
for the particular case of the formulation ��� in which Q� A� and C are dense
matrices� �This formulation appears in the OOQP distribution in the directory
src�QpExample��

The lowest layer of OOQP is the linear algebra layer� This layer contains
code for manipulating linear algebra objects� such as vectors and matrices� that
provides behavior useful across a variety of QP formulations�

���� Solver Class

The Solver class contains methods for monitoring and checking the conver�
gence status of the algorithm� methods to determine the step length along a
given direction� methods to de	ne the starting point� and the solve method
that implements the interior�point algorithm� The solve method for the two de�
rived classes MehrotraSolver and GondzioSolver implements the algorithms
described in Section � and stores the various parameters used by these algo�
rithms� For instance� the parameter � in Algorithm MPC is 	xed to a default
value in the constructor routines for MehrotraSolver� along with a tolerance
parameter to be used in termination tests� a parameter indicating maximum
number of iterations allowed� and so on� Even though some fairly sophisticated
heuristics are included directly in the solve code �such as Gondzio�s rules for ad�
ditional corrector steps�� the code implementing solve contains fewer than ���
lines of C�� in both cases� Key operations
residual computations� saxpy oper�
ations� linear system solves
are implemented by calls to abstract classes in the
problem formulation layer� making our implementation structure independent�

Apart from solve� the other important methods in Solver include the fol�
lowing�
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start� Implements a default starting�point heuristic� While interior�point the�
ory places fairly loose restrictions on the choice of starting point� the choice
of heuristic can signi	cantly a
ect the robustness and e�ciency of the al�
gorithm� The heuristic implemented in the OOQP distribution is described
further in Section ����

finalStepLength� Implements a version of Mehrotra�s starting point heuris�
tic ���� Section ��� modi	ed to ensure identical steps in the primal and dual
variables�

doStatus� Tests for termination� Unless the user supplies a speci	c termination
routine� this method calls another method defaultStatus� which performs
the tests ���� ����� ����� and ���� and returns a code indicating the current
convergence status�

���� Data Class

The Data class stores the data de	ning the problem and provides methods for
performing the operations with this data required by the interior�point algo�
rithms� These operations include assembling the linear systems ��� or ���� per�
forming matrix�vector operations with the data� calculating norms of the data�
reading input into the data structure from various sources� generating random
problem instances� and printing the data�

Since both the data structures and the methods implemented in Data depend
so strongly on the structure of the problem� the parent class is almost empty�
Our derived class of Data for the formulation ��� de	nes the vectors c� b� and d
and the matrices A� C� and Q to be objects of the appropriate type from the
linear algebra layer� The dimensions of the problem �n� mA� and mC� would be
stored as integer variables�

Following ��� and ���� the general form of the linear system to be solved at
each iteration is �

���
Q �AT �CT �
A � � �
C � � �I
� � S Z

�
���

�
���
�x
�y
�z
�s

�
��� � �

�
���
rQ
rA
rC
rz�s

�
��� � ����

for some choice of rz�s� Since the diagonal elements of Z and S are strictly
positive� we can do a step of block elimination to obtain the following equivalent
system�

�
�Q AT CT

A � �
C � �Z��S

�
�
�
� �x
��y
��z

�
� �

�
� �rQ

�rA
�rC � Z��rz�s

�
� � ���a�

�s � Z����rz�s � S�y�� ���b�

Because of its symmetric inde	nite form and the fact that formation of Z��S is
trivial� the system ���a� is convenient to solve in general� �Further reduction is
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possible for QPs with special structures� as we discuss in Section ��� Storage for
the matrix in ���a� is allocated in the LinearSystem class� but the methods for
placing Q� A� and C into this data structure are implemented in the Data class�

���� Variables Class

The methods in the Variables class are de	ned as pure virtual functions because
they strongly depend on the structure of the variables and the problem� They are
essential in the implementation of the algorithms� The derived Variables class
for the formulation ��� contains int objects that store the problem dimensions
n� mA� and mC and vector objects from the linear algebra layer that store x� y�
z� and s�

Methods in the Variables class include a method for calculating the comple�
mentarity gap � �in the case of ���� this is de	ned by � � zT s�mC�� a method for
adding a scalar multiple of a given search direction to the current set of variables�
a method for calculating the largest multiple of a given search direction that can
be added before violating the nonnegativity constraints� a method for printing
the variables in some format appropriate to their structure� and methods for
calculating various norms of the variables�

���� Residuals Class

The Residuals class calculates and stores the quantities that appear on the
right�hand side of the linear systems such as ��� and ��� that arise at each
interior�point iteration� These residuals can be partitioned into two fundamen�
tal categories� the components arising from the linear equations in the KKT
conditions� and the components arising from the complementarity conditions�
For the formulation ���� the components rQ� rA� and rC �which arise from KKT
linear equations ��a�� ��b�� and ��c�� belong to the former class while rz�s belongs
to the latter�

The main methods in the Residuals class are a method for calculating the
�linear equations� residuals� a method for calculating the current duality gap
�which we de	ne for the formulation ��� by ����� a method for calculating the
residual norm� methods for zeroing the residual vectors� and methods for cal�
culating and manipulating the �complementarity� residuals as required by the
interior�point algorithm�

���� LinearSystem Class

The major operation at each iteration� computationally speaking� is the solution
of a number of linear systems to obtain the predictor and corrector steps� For
the formulation ���� these systems have the form ����� At each iteration of the
interior�point method� such systems need to be solved two to six times� for di
er�
ent choices of the right�hand side components but the same coe�cient matrix�
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Accordingly� it makes sense to logically separate the operations of factoring
this matrix and solveing for a speci	c right�hand side�

We use the term �factor� in a general sense� to indicate the part of the solu�
tion process that is independent of the right�hand side� The factormethod could
involve certain block�elimination operations on the coe�cient matrix� together
with an LU � LDLT � or Cholesky factorization of a reduced system� Alternatively�
when an iterative solver is used� the factor operation could involve computa�
tion of a preconditioner� The factor method may need to store data� such as
a permutation matrix� triangular factors of a reduced system� or preconditioner
information� for use in subsequent solve operations� We use the term �solve�
to indicate that part of the solution process that takes a speci	c right�hand side
and produces a result� Usually� the results of the �factor� method are used to
facilitate or speed the solve process� Depending on the algorithm we employ� the
solve method could involve triangular back�and�forward substitutions� matrix�
vector multiplications� applications of a preconditioner� or permutation of vector
components�

We describe possible implementations of factor for the formulation ����
One possibility is to apply a symmetric inde	nite factorization routine directly
to the formulation ���a�� The solve would use the resulting factors and the
permutation matrices to solve ���a� and then substitute into ���b� to recover
�s� Another possible approach is to perform another step of block elimination
and obtain a further reduction to the form
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Again� factor could apply a symmetric inde	nite factorization procedure to the
coe�cient matrix in this system� This variant is less appealing than the approach
based on ���a�� however� since the latter approach allows the factorization rou�
tine to compute its own pivot sequence� while in ���� we have partially imposed
a pivot ordering on the system by performing the block elimination� However�
if the problem ��� contained no equality constraints �that is� A and b null�� the
approach ���� might make sense� as it would allow a symmetric positive de�nite
factorization routine to be applied to the matrix Q� CTZS��C�

An alternative approach would be to apply an iterative method such as
QMR ������� or GMRES ���� �see also Kelley ����� to the system ���a�� Under
this scenario� the role of the factor routine is limited to choosing a precondi�
tioner� Since some elements of the diagonal matrix Z��S approach zero while
others approach
� a diagonal scaling that ameliorates this e
ect should be part
of the preconditioning strategy�

The arguments of factor include instances of Variables and Data� which
su�ce to de	ne the matrix fully� The information generated by factor is stored
in the LinearSystem class� to be used subsequently by the solve method� The
solve method accepts as input a Data object� a Variables object containing
the current iterate� and a Residuals object containing the right�hand side of the
linear system to be solved� It uses the information generated by factor to solve
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the linear system and returns an instance of Variables that contains the solu�
tion� Both factor and solve are pure virtual functions� their implementation
is left to the derived class� since they depend strongly on the problem structure�

��	� Linear Algebra Classes

In the preceding section� we discussed the structure�independent algorithmic
classes of the QP solver layer and the structure�dependent problem�speci	c
classes of the problem formulation layer� None of these classes� however� sup�
plies the behavior that allows the user to perform the linear algebra operations
needed to solve an optimization problem� These classes are supplied by the lin�
ear algebra layer� The problem formulations supplied with OOQP are written
entirely in terms of abstract operation of this layer�

The same basic requirements for linear algebra operations and data struc�
tures recur in many di
erent problem formulations� Regardless of the origin of
the QP� the Variable� Data� and LinearSystem classes need to perform saxpy�
dot product� and norm calculations� Furthermore� many sparse problems need
to store and operate on matrices in a Harwell�Boeing format� If we chose to
reimplement these linear algebra operations and operations and data structures
inside each of the problem�dependent classes wherever they were needed� we
would have faced an explosion in the size and complexity of our code�

Our approach to the linear algebra classes is to identify the basic operations
that are used repeatedly in our problem�dependent implementations and provide
these as methods� As far as possible� we use existing packages such as BLAS�
LAPACK� MA��� and PETSc to supply the behavior needed to implement these
methods� We are not striving to provide a complete linear algebra package�
merely one that is useful in implementing interior�point algorithms� For this
reason� we do not implementmany BLAS operations� whereas certain operations
common to interior�point algorithms� but rare elsewhere� are given equal status
with the BLAS�type routines�

The primary abstract classes in the linear algebra layer are OoqpVector�
GenMatrix� and SymMatrix� which represent mathematical vectors� matrices�
and symmetric matrices� respectively� The DoubleLinearSolver class� which
represents linear equation solvers� is also part of this layer� Because most of the
methods of these classes represent mathematical operations and are named ac�
cording to the nature of the operation� the interested reader can learn about the
range of implementedmethods by referring to the source code� We have provided
concrete implementations of the linear algebra layer that perform operations on
a single processor� using both dense and sparse representations of matrices� and
an implementation that uses PETSc to represent vectors and matrices as objects
on a distributed system�
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��
� Use of Classes and Layers in OOQP� An Illustration

We now give a speci	c example of how the three layers in OOQP interact with
each other� The start method of the Solver class implements a heuristic to
determine the starting point� Since this particular heuristic has proven to be
e
ective regardless of the speci	c problem structure� it is part of the QP solver
layer
the top layer� The code used to implement this method is as follows�

void Solver��start� Variables � iterate� Data � prob�

Residuals � resid� Variables � step 	




double sdatanorm � sqrt�prob�
datanorm�		� �� � ��

double a � sdatanorm� b � sdatanorm� �� � ��

iterate�
interiorPoint� a� b 	� �� � ��

resid�
calcresids� prob� iterate 	� �� � ��

resid�
set�r��xz�alpha� iterate� ��� 	� �� � ��

sys�
factor� prob� iterate 	� �� � ��

sys�
solve� prob� iterate� resid� step 	� �� � ��

step�
negate�	� �� � ��

iterate�
saxpy� step� ��� 	� �� � ��

double shift � ��e� � ��iterate�
violation�	� �� �� ��

iterate�
shiftBoundVariables� shift� shift 	� �� �� ��

�

We describe each line in this code by referring to the way in which it would
be implemented for the particular formulation ���� We emphasize� however� that
the matrices Q� A� and C speci	c to this formulation appear nowhere in the code
for the start method� Rather� they are represented by the prob variable of the
Data class� Likewise� this code does not refer to the residuals rQ� rA� and rC but
rather has a variable resids that represents the residuals with some unspeci	ed
structure�

Lines � and � set the scalar variables a and b to be the square root of the
norm of the data� The norm of the data is computed by invoking the datanorm
method on prob� For formulation ��� the data norm is de	ned to be magnitude
of the largest element in the matrices Q� A� and C and the vectors c� b� and d�

In line �� we invoke the interiorPoint method on iterate to compute
an appropriate strictly feasible point� For formulation ���� this method call has
the e
ect of setting x and y to zero� all the components of z to a� and all the
components of s to b�

The call to calcresids in line � calculates the value of the residuals of
the primal�dual system� through formulae similar to ��c����e�� Line � sets the
complementarity part of the residuals to their a�ne scaling value� and lines ���
solve the a�ne scaling system� which for ��� has the form ����
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We next invoke the saxpy method on iterate to take the full a�ne scaling
step� in other words to compute

�x� y� z� s�� �x� y� z� s� � ��xa���ya���za���sa���

This step is likely to result in an iterate that is infeasible� The violation

method in line �� calculates the amount by which the variables violate their
bounds� for ��� the formula is maxi
��������mC max��zi��si� ��� We calculate a
shift large enough to make the iterate feasible� and apply this shift by invoking
the shiftBoundVariables method� for formulation ��� setting z � z � shift

and s� s� shift�
All the operations used in the startmethod are part of the abstract problem

formulation layer� They refer to operations in the problem formulation layer�
avoiding altogether references to the speci	c problem structure� The problem
formulation layer is in turn built upon the abstract operations in the linear
algebra layer� Take� for example� the implementation of the negate method for
the formulation ���� which is de	ned as follows�

void QpExampleVars��negate�	




x�
negate�	� y�
negate�	�

z�
negate�	� s�
negate�	�

�

This method speci	cally references the fact that the variables have an x� y� z and
s component� On the other hand� it makes no reference to how these variables are
stored on a computer� They may be all in the core memory of a single processor
or distributed across many processors� Managing such low�level details is the
responsibility of the linear algebra layer� The problem formulation layer need
only invoke abstract operations from this layer� in this case the negate method
of the OoqpVector class�


� Other Classes

In this section� we describe some useful classes� also provided with OOQP� that
don�t 	t into the framework described in the preceding section�

���� Status and Monitor Classes

OOQP is designed to operate both in a stand�alone context and as part of a
larger code� Since di
erent termination criteria and di
erent amounts of inter�
mediate output are appropriate to di
erent contexts� we have designed the code
to be �exible in these matters� An abstract Monitor class is designed to mon�
itor the algorithm�s progress� and an abstract Status class tests the status of
the algorithm after each iteration� checking whether the termination criteria are
satis	ed�
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The two implementations of the Solver class in OOQP each provide their
own defaultMonitor and defaultStatus methods� Users who wish to mod�
ify the default functionality can simply create a subclass of the Solver class
that overrides these default implementations� However� since OOQP delegates
responsibility for these functions to Monitor and Status classes� an alternative
mechanism is available� Users can create subclasses of Monitor and Status� re�
de	ning the doIt method in these classes to carry out the functionality they
need�

���� MpsReader Class

The MPS format has been widely used since the ����s to de	ne linear program�
ming problems� It is an ASCII 	le format that allows naming of the variables�
constraints� objectives� and right�hand sides in a linear program� and assignment
of numerical values that de	ne the data objects� Extensions of the format to al�
low de	nition of quadratic programs have been proposed by various authors�
most notably Maros and M�esz�aros ����� The key extension is the addition of
a section to the MPS 	le that de	nes elements of the Hessian� Though primi�
tive by the standards of modeling languages� MPS remains a popular format for
de	ning linear programming problems� and many test problems are speci	ed in
this format�

OOQP includes an MpsReader class that reads MPS 	les� The main input
method in the MpsReader class is readQpGen� which reads a 	le in the extended
MPS format described in ���� into the data structures of the class QpGenData� a
derived class of Data for general sparse quadratic programs� The names assigned
to primal and dual variables in the MPS input 	le are stored for later use in the
output method printSolution�

�� Implementing Derived Classes for Structured QPs

In this section� we illustrate the use of the OOQP framework in implement�
ing e�cient solvers for some highly structured quadratic programming applica�
tions� We give a brief description of how some of the derived classes for Data�
Variables� Residuals� and LinearSystem are implemented in a way that re�
spects the structure of these problem types�

���� Huber Regression

Given a matrix A � IR
��n and a vector b � IR

�� we seek the vector x � IR
n that

minimizes the objective function

�X
i
�

���Ax � b�i�� ����
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where

��t� �

	
�
�t
�� jtj 	 ��

� jtj � �
��

�� jtj � ��

where � is a positive parameter� The function behaves like a least�squares loss
function for small values of the residuals and like the more robust �� function for
larger residuals� so its minimizer is less sensitive to �outliers� in the data than
is the least�squares function� By setting the derivative of ���� to zero� we can
formulate this problem as a mixed monotone linear complementarity problem
by introducing variables w� 
�� 
�� ��� �� � IR

� and writing

w � Ax� b � 
� � 
� � �� ���a�

ATw � �� ���b�

�� � w � �e� ���c�

�� � �w � �e� ���d�

�� � � � 
� � �� ���e�

�� � � � 
� � �� ���f�

Mangasarian and Musicant ���� formula ���� show that the conditions ���� are
the optimality conditions of the following quadratic program�

min �
�w

Tw � �eT �
� � 
��� ���a�

subject to w � Ax� b� 
� � 
� � �� 
� � �� 
� � ��

Li and Swetits ���� derive an alternative linear program that yields the optimality
conditions ����� namely�

min �
�w

Tw � bTw� subject to � ATw � �� ��e 	 w 	 �e� ����

Both forms and their relationship are discussed by Wright ����� Obviously� both
have a highly speci	c structure� The Hessian is simply the identity matrix� the
constraint matrix in ���� is sparse and structured� and the bounds in ���� can
all be de	ned by a scalar � �

OOQP contains an implementation of a solver for this problem in the di�
rectory src�Huber� The HuberData class� derived from Data� contains the di�
mensions of the matrix A and storage for � as well as A and b� �The structures
for both A and b are dense� since these quantities are expected to be dense in
most applications�� The HuberData class also contains a method textInput that
reads the contents of A and b from a 	le in a simple format� For benchmark�
ing purposes� it also contains a method datarandom for de	ning a problem of
speci	ed dimensions with random data�

The HuberVars structure� which derives from Variables� contains vectors
of doubles to store w� z� 
�� 
�� �� and ��� The methods for HuberVars are
de	ned in a way appropriate to the data structures� for example� � is calculated
as 


�
��T �� � �
��T��
�
������
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In the Residual class HuberResiduals� four vectors are de	ned to hold the
residuals corresponding to the 	rst four equations in ����� while two more vectors
hold residuals corresponding to the complementarity conditions 
�i �

�
i � �� i �

�� �� � � � � � and 
�i �
�
i � �� i � �� �� � � � � �� respectively�

The linear systems to be solved at each iteration of the primal�dual algorithm
applied to this problem have the following general form�

�
�������

I �A �I I � �
AT � � � � �
�I � � � I �
I � � � � I
� � � � � �� �
� � � � � � ��

�
�������

�
�������

�w
�x
�
�

�
�

���

���

�
�������
�

�
�������

rw
rx
r��
r��
r��
r��

�
�������
�

By performing block elimination� we can reduce to a much smaller system of the
form

AT
�
I � �� ������ � �� ������


��
A�x �  rx� ����

�Note that the matrix I��� ��������� ������ is diagonal and therefore easy to
form and invert�� The factor method in the derived class HuberLinsys forms
the coe�cient matrix in ���� and performs a Cholesky factorization� storing
the triangular factor L� The solve method performs the corresponding block
eliminations on the right�hand side vector to obtain  rz in ����� solves this system
to obtain �z� and then recovers the other components of the solution� The cost
of each factor is O�n��� n	�� while the cost of each solve is O�n��� Since n is
typically small� both operations are economical�

���� Support Vector Machines

The following problem that arises in machine learning �Vapnik ���� Chapter ����
Given a set of points xi � IR

n� i � �� �� � � � � �� where each point is tagged with a
label yi that is either �� or ��� we seek a hyperplane such that all points with
label yi � �� lie on one side of the hyperplane while all points labeled with ��
lie on the other side� That is� we would like the following properties to hold for
some w � IR

n and � � IR�

yi � ��� wTxi � � � �� yi � ��� wTxi � � � ��

or� equivalently� yi�w
Txi � �� � �� i � �� �� � � � � �� By scaling w and � appropri�

ately� we see that if such a hyperplane exists� we have without loss of generality
that

yi�w
Txi � �� � �� i � �� �� � � � � �� ����

If such a plane exists� the data is said to be separable� For nonseparable data� one
may still wish to identify the hyperplane that minimizes the misclassi	cation in
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some sense� we would like to have not too many points lying on the wrong side
of the hyperplane� One formulation of this problem is as follows ���� p� �����

min �
�w

Tw � CeT �� subject to ���a�

yi�wTxi � �� � �� �i� �i � �� i � �� �� � � � � �� ���b�

The unknowns are the hyperplane variables �w� �� and the vector � � IR
� that

measures violation of the condition ����� The positive parameter C weighs our
desire to minimize the classi	cation violations against a desire to keep kwk of
reasonable size� In a typical problem� the dimension n of the space in which each
xi lies is not very large �������� say�� while the number of points � can be quite
large ���	������ Hence� the problem ���� can be a very large� highly structured
quadratic program�

Denoting
Y � �yixi�

i
�
� � b � �yi�

i
�
� �

we can rewrite ���� as follows�

min
w���	

�

�
wTw �CeT � subject to Y w � � � �b � e� � � �� ����

By writing the optimality conditions for this system and applying the usual
derivation of the primal�dual equations� we arrive at the following general form
for the linear system to be solved at each interior�point iteration�

�
�������

I �Y T

Y I �I � �b
�I �I
bT

S V
T �

�
�������

�
�������

�w
�v
��
�s
�t
��

�
�������
�

�
�������

rw
r�
rC
rb
rSV
rT


�
�������
�

By performing successive block eliminations in the usual style� we arrive at a
reduced system in the variables �w and �� alone� with the following coe�cient
matrix� �

I � Y TDY �Y TDb
�bTDY bTDb

�
� where D � �V ��S � T�������

This matrix has dimension n�� and requires O�n��� operations to form� It takes
O�n	�n�� operations to solve the reduced system and to recover the eliminated
components�

The OOQP distribution contains an implementation of an SVM solver in
directory src�Svm� The SvmData class� a subclass of Data� stores the dimensions
hyperplanedim �n� and nobservations ���� the objects Y and b stored as a
dense matrix �Y j b�� the object b stored as a vector� and the penalty constant C�
It also contains methods to multiply given vectors by �Y j b� and its transpose� a
method to read input from an ASCII 	le in a simple format� a method to form
the inner product of a given vector with b� and methods to generate random
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data and to print the data objects� The subclass SvmVars of Variables consists
of dense vectors containing w� �� �� v� s� and t� together with a method to print
the solution� a method to print just the interesting part of the solution �w and
��� and the pure virtual methods required by the parent Variables class� The
subclasses SvmResiduals �of Residuals� and SvmLinsys �of LinearSystem� are
de	ned in such as way as to facilitate the approach described in the previous
paragraph for solving the linear systems�

���� Quadratic Programming with Bound Constraints

Consider the following QP in which the only constraints are upper and lower
bounds on selected variables�

minx
�
�
xTQx� cTx subject to ���a�

xi � li� i � L� xi 	 ui� i � U � ���b�

where L and U are subsets of f�� �� � � � � ng� We de	ne the following row subma�
trices of I� corresponding to the constraint index sets L and U �

EL �


eTi
�
i�L

� EU �


eTi
�
i�U

�

where ei is the vector whose only nonzero element is a ��� in position i� Intro�
ducing slack variables si� i � L for the lower bounds and ti� i � U for the upper
bounds� and Lagrange multipliers vi and zi for the lower and upper bounds�
respectively� we obtain the following optimality conditions�

Qx�ET
Lv � ET

U z � �c�

ELx� s � l�

EUx� t � u�

s � � � v � ��

t � � � z � ��

where l � �li�i�L� v � �vi�i�L� and so on� By writing the general form of the
primal�dual linear system and performing the now familiar block elimination
process� we arrive at a reduced system in the step �w whose coe�cient matrix
is

 Q
def
� Q�ET

LS
��V EL � ET

UT
��ZEU � ����

The second and third terms are diagonal matrices with nonzero elements occur�
ring at diagonal locations corresponding to L �for the second term� and U �for
the third term��

The matrix ���� is symmetric and positive semide	nite� One possibility there�
fore is to solve it with a sparse Cholesky factorization code� modi	ed to allow
for small pivots� A second possibility is to apply an iterative method� most suit�
ably a preconditioned conjugate gradient approach� Some of the diagonals in
the second and third terms of ���� approach
 as we near the solution� and the
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preconditioner should at a minimum ameliorate this e
ect� Speci	cally� de	ning
a diagonal preconditioner D as follows�

Dii
def
� max

��
ET
LS

��V EL � ET
UT

��ZEU


ii
� �


�

and applying the preconditioner symmetrically to obtain

D����  QD����� ����

we would obtain a matrix that approaches a symmetric permutation of the fol�
lowing� �

!Q �
� I

�
�

where !Q is the reduced Hessian �the submatrix of Q corresponding to the com�
ponents of x that are away from their bounds at the solution�� An additional
level of preconditioning �for example� incomplete Cholesky� could be applied to
the matrix in ���� to further enhance the convergence properties of conjugate
gradient�

The OOQP distribution contains an implementation of a solver for ���� for
a dense Hessian� The QpBoundData subclass of Data stores Q as a SymMatrix

object� and c� l� and u as SimpleVector objects containing n elements
the
bound vectors store even their zero elements� Two other SimpleVector ob�
jects index lower and index upper of length n represent the information in
L and U � they contain nonzero elements in locations corresponding to the el�
ements of L and U � respectively� Note that the class QpBoundData itself does
not mandate a dense storage scheme� only when an instance of this class is
created by the method QpBoundDense��makeData�	 is the storage scheme for
Q actually de	ned to be dense� �We could implement an alternative method
QpBoundSparse��makeData�	 that uses the same de	nition of QpBoundData but
uses a sparse storage scheme for Q instead��

The QpBoundData class also contains a datarandom�	 method to gener�
ate a random problem with speci	ed dimension� The QpBoundVars subclass of
Variables stores x� s� t� u� and v as OoqpVector objects of size n and uses the
index lower and index upper vectors from the QpBoundData class to indicate
which elements of s� t� u� and v are of real interest� QpBoundResiduals is a
subclass of Residuals that implements the pure virtual methods in a straight�
forward way� while the QpBoundLinsys subclass of LinearSystem sets up the
matrix ���� as a dense symmetric matrix and uses the LAPACK implementa�
tion of Cholesky factorization to solve it�

We have also implemented a solver for a sparse version of ���� that uses itera�
tive methods from the PETSc library to solve the main linear system at each iter�
ation� The PETSc version uses the same problem formulation classes as the dense
version� QpBoundData� QpBoundResiduals� QpBoundVars� and QpBoundLinsys�
It uses� however� a completely di
erent linear algebra layer �see Section ���
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�� OOQP Distribution

The OOQP distribution archive can be obtained from

http���www�cs�wisc�edu��swright�ooqp�

To install OOQP on a Unix system� follow the download procedure to obtain
a gzipped tar 	le� and unpack to obtain a directory OOQP� Refer to the 	le
INSTALL in this directory for information on setting up the environment required
by OOQP �for example� ensuring that a BLAS library is available and obtain�
ing the MA�� package from the HSL Archive� and building OOQP executables
for the various solvers� The README 	le contains basic information about the
contents of the distribution directory� the problems solved� and locations of the
documentation� In particular� by pointing a browser at the 	le doc�index�html�
one can obtain pointers to comprehensive documentation of various types�

By default� the con	gure�make process builds executables for the following
solvers�

� two solvers for general sparse QPs� using Mehrotra�s original algorithm and
Gondzio�s variant� respectively� and solving linear equations with MA�� in
both cases�

� two solvers for general dense QPs� using Mehrotra�s original algorithm and
Gondzio�s variant� respectively�

� a solver for the QP with bounds described in Section ���� with dense Hessian�
� a solver for Huber regression� described in Section ����
� a solver for QPs arising from support vector machines� described in Sec�

tion ����

Interfaces that make some of the functionality of these solvers available via
the AMPL modeling language andMATLAB are also included in the distribution
but are not con	gured in the default build process� For AMPL� a solver for
general sparse QP is available� instructions for building this solver are included
in the INSTALL 	le� The OOQP distribution provides MATLAB functionality
for reading MPS input 	les� calling a solver for general sparse QP� and calling
solvers for SVM and Huber regression problems� Instructions for building the
MATLAB interface can be found in the 	le README Matlab�
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